Model Information

This page provides detailed information about the OVP Fast Processor Model of the RISC-V rv64f (RV64G) core.
This page is information about the RV64F alias of the RV64G variant.
Processor IP owner is RISC-V Foundation.

OVP Fast Processor Model is written in C.
Provides a C API for use in C based platforms.
Provides a native C++ interface for use in SystemC TLM2 platforms.

The model is written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor.
The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance.

The model is provided as a binary shared object and is also available as source (different models have different licensing conditions). This allows the download and use of the model binary or the use of the source to explore and modify the model.

The model has been run through an extensive QA and regression testing process.

Parallel Simulation using Imperas QuantumLeap
Traditionally, processor models and simulators make use of one thread on the host PC. Imperas have developed a technology, called QuantumLeap, that makes use of the many host cores found in modern PC/workstations to achieve industry leading simulation performance. To find out about the Imperas parallel simulation lookup Imperas QuantumLeap. There are videos of QuantumLeap on ARM here, and MIPS here. For press information related to QuantumLeap for ARM click here or for MIPS click here.
Many of the OVP Fast Processor Models have been qualified to work with QuantumLeap - this is indicated for this model below.

Embedded Software Development tools
This model executes instructions of the target architecture and provides an interface for debug access. An interface to GDB is provided and this allows the connection of many industry standard debuggers that use the GDB/RSP interface. For more information watch the OVP video here.
The model also works with the Imperas Multicore Debugger and advanced Verification, Analysis and Profiling tools.

Instruction Set Simulator (ISS) for RISC-V rv64f (RV64G)
An ISS is a software development tool that takes in instructions for a target processor and executes them. The heart of an ISS is the model of the processor. Imperas has developed a range of ISS products for use in embedded software development that utilize this fast Fast Processor Model. The Imperas RISC-V rv64f (RV64G) ISS runs on Windows/Linux x86 systems and takes a cross compiled elf file of your program and allows very fast execution. The RISC-V rv64f (RV64G) ISS also provides access to standard GDB/RSP debuggers and connects to the Eclipse IDE and Imperas debuggers.

Overview of RISC-V rv64f (RV64G) Fast Processor Model
Model Variant name: rv64f (RV64G)
    RISC-V RV64G 64-Bit Family Processor Model.
    The Following Instruction Sets are supported
    RV32 I - Base Integer Instruction Set
    RV32 M - Standard Extension for Multiplication
    RV32 A - Standard Extension for Atomic Instructions
    RV32 F - Standard Extension for Single-Precision Floating-Point
    RV32 F - Standard Extension for Double-Precision Floating-Point
    RV64 I - Base Integer Instruction Set
    RV64 M - Standard Extension for Multiplication
    RV64 A - Standard Extension for Atomic Instructions
    RV64 F - Standard Extension for Single-Precision Floating-Point
    RV64 D - Standard Extension for Double-Precision Floating-Point
    This model only provides an ISA reference implementation, no privilege modes exist for this reference
    This Model is released under the Open Source Apache 2.0
    This Model is currently work in progress and has many features scheduled, but not yet implemented
    Instruction pipelines are not modeled in any way. All instructions are assumed to complete immediately. This means that instruction barrier instructions (e.g. fence.i) are treated as NOPs, with the exception of any undefined instruction behavior, which is modeled.
    Caches and write buffers are not modeled in any way. All loads, fetches and stores complete immediately and in order, and are fully synchronous. Data barrier instructions (e.g. fence) are treated as NOPs, with the exception of any undefined instruction behavior, which is modeled.
    Real-world timing effects are not modeled: all instructions are assumed to complete in a single cycle.
    Extensive testing of supported instructions
    This includes tests generated specifically for this model by Imperas
    In addition to
    The Model details are based upon the following specifications
    ---- RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2
    ---- RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Privileged Architecture Version 1.10

Model downloadable (needs registration and to be logged in) in package riscv.model for Windows32 and for Linux32. Note that the Model is also available for 64 bit hosts as part of the commercial products from Imperas.
OVP simulator downloadable (needs registration and to be logged in) in package OVPsim for Windows32 and for Linux32. Note that the simulator is also available for 64 bit hosts as part of the commercial products from Imperas.
OVP Download page here.
OVP documentation that provides overview information on processor models is available OVP_Guide_To_Using_Processor_Models.pdf.

Full model specific documentation on the variant rv64f (RV64G) is available OVP_Model_Specific_Information_riscv_RV64G.pdf.

Location: The Fast Processor Model source and object file is found in the installation VLNV tree:
Processor Endian-ness: This model can be set to either endian-ness (normally by a pin, or the ELF code).
Processor ELF Code: The ELF code for this model is: 0xf3
QuantumLeap Support: The processor model is qualified to run in a QuantumLeap enabled simulator.

TLM Initiator Ports (Bus Ports)
Port TypeNameWidth (bits)Description
SystemC Signal Ports (Net Ports)
Port TypeNameDescription

No FIFO Ports in RV64F.


No Execution Modes in RV64F.

More Detailed Information

The RV64F OVP Fast Processor Model also has parameters, model commands, and many registers.
The model may also have hierarchy or be multicore and have other attributes and capabilities.
To see this information, please have a look at the model variant specific documents.
Click here to see the detailed document OVP_Model_Specific_Information_riscv_RV64G.pdf.

Other Sites/Pages with similar information

Information on the RV64F OVP Fast Processor Model can also be found on other web sites:: has the library pages has more information on the model library

A couple of documents (from other related sites that might be of interest) Function by function Reference Guide for BHM / PPM APIs. Simulation Control of Platforms and Modules User Guide

Two Videos on these models (from other sites) RISC-V Bare Metal Demos Video Presentation Altera Nios II Bare Metal & Cyclone III Linux Booting Demo Video

Currently available Fast Processor Model Families.

FamilyModel Variant
Renesas Models    Renesas Models aliases V850 V850E1 V850E1F V850ES V850E2 V850E2M V850E2R RH850G3M m16c r8c RL78-S1 RL78-S2 RL78-S3 (aliases)
RISC-V Models    RISC-V Models aliases RV32I RV32G RV64I RV64G RISCV_UISA (aliases)
MIPS Models    MIPS Models aliases ISA M14K M14KcTLB M14KcFMM 4KEc 4KEm 4KEp M4K 4Kc 4Km 4Kp 24Kc 24Kf 24KEc 24KEf 34Kc 34Kf 34Kn 74Kc 74Kf 1004Kc 1004Kf 1074Kc 1074Kf microAptivC microAptivP microAptivCF interAptiv interAptivUP proAptiv 5Kf 5Kc 5KEf 5KEc M5100 M5150 M6200 M6250 MIPS32R6 P5600 P6600 I6400 MIPS64R6 (aliases)
ARM Models    ARM Models aliases ARMv4T ARMv4xM ARMv4 ARMv4TxM ARMv5xM ARMv5 ARMv5TxM ARMv5T ARMv5TExP ARMv5TE ARMv5TEJ ARMv6 ARMv6K ARMv6T2 ARMv6KZ ARMv7 ARM7TDMI ARM7EJ-S ARM720T ARM920T ARM922T ARM926EJ-S ARM940T ARM946E ARM966E ARM968E-S ARM1020E ARM1022E ARM1026EJ-S ARM1136J-S ARM1156T2-S ARM1176JZ-S Cortex-R4 Cortex-R4F Cortex-A5UP Cortex-A5MPx1 Cortex-A5MPx2 Cortex-A5MPx3 Cortex-A5MPx4 Cortex-A8 Cortex-A9UP Cortex-A9MPx1 Cortex-A9MPx2 Cortex-A9MPx3 Cortex-A9MPx4 Cortex-A7UP Cortex-A7MPx1 Cortex-A7MPx2 Cortex-A7MPx3 Cortex-A7MPx4 Cortex-A15UP Cortex-A15MPx1 Cortex-A15MPx2 Cortex-A15MPx3 Cortex-A15MPx4 Cortex-A17MPx1 Cortex-A17MPx2 Cortex-A17MPx3 Cortex-A17MPx4 AArch32 AArch64 Cortex-A53MPx1 Cortex-A53MPx2 Cortex-A53MPx3 Cortex-A53MPx4 Cortex-A57MPx1 Cortex-A57MPx2 Cortex-A57MPx3 Cortex-A57MPx4 Cortex-A72MPx1 Cortex-A72MPx2 Cortex-A72MPx3 Cortex-A72MPx4 MultiCluster ARMv6-M ARMv7-M Cortex-M0 Cortex-M0plus Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M4F (aliases)
POWER Models    POWER Models aliases mpc82x UISA m476 m470 m460 m440 (aliases)
Other Models    Other Models aliases Synopsys ARC_600 Synopsys ARC_605 Synopsys ARC_700 Synopsys ARC_0x21 Synopsys ARC_0x22 Synopsys ARC_0x31 Synopsys ARC_0x32 openCores_generic Xilinx MicroBlaze_V7_00 Xilinx MicroBlaze_V7_10 Xilinx MicroBlaze_V7_20 Xilinx MicroBlaze_V7_30 Xilinx MicroBlaze_V8_00 Xilinx MicroBlaze_V8_10 Xilinx MicroBlaze_V8_20 Xilinx MicroBlaze_V9_50 Xilinx MicroBlaze_V10_00 Xilinx MicroBlaze_ISA Altera Nios II_Nios_II_F Altera Nios II_Nios_II_S Altera Nios II_Nios_II_E (aliases)